Search results for "quasinormal mode"

showing 10 items of 10 documents

Empirical parameterization of the K±→π±π0π0 decay Dalitz plot

2010

As first observed by the NA48/2 experiment at the CERN SPS, the π0π0 invariant mass (M00) distribution from K±→π±π0π0 decay shows a cusp-like anomaly at M00=2m+, where m+ is the charged pion mass. An analysis to extract the ππ scattering lengths in the isospin I=0 and I=2 states, a0 and a2, respectively, has been recently reported. In the present work the Dalitz plot of this decay is fitted to a new empirical parameterization suitable for practical purposes, such as Monte Carlo simulations of K±→π±π0π0 decays.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsScatteringMonte Carlo methodDalitz plot01 natural sciencesPionIsospin0103 physical sciencesQuasinormal modeHigh Energy Physics::ExperimentInvariant massAnomaly (physics)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Mass spectrum and thermodynamics of quasi-conformal gauge theories from gauge/gravity duality

2011

We use gauge/gravity duality to study simultaneously the mass spectrum and the thermodynamics of a generic quasi-conformal gauge theory, specified by its beta function. The beta function of a quasi-conformal theory almost vanishes, and the coupling is almost constant between two widely separated energy scales. Depending on whether the gravity dual has a black hole or not, the mass spectrum is either a spectrum of quasinormal oscillations or a normal T=0 mass spectrum. The mass spectrum is quantitatively correlated with the thermal properties of the system. As the theory approaches conformality, the masses have to vanish. We show that in this limit, the masses calculated via gauge/gravity du…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)FOS: Physical sciencesDuality (optimization)GravitationBlack holeHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum mechanicsQuasinormal modeSeiberg dualityDilatonGauge theoryMathematical physics
researchProduct

Coherent control of stimulated emission inside one-dimensional photonic crystals

2004

In this paper, the quasinormal mode (QNM) theory is applied to discuss the quantum problem of an atom embedded inside a one-dimensional (1D) photonic band gap (PBG) cavity pumped by two counterpropagating laser beams. The e.m. field is quantized in terms of the QNMs in the 1D PBG and the atom modeled as a two-level system is assumed to be weakly coupled to just one of the QNMs. The main result of the paper is that the decay time depends on the position of the dipole inside the cavity, and can be controlled by the phase difference of the two laser beams.

PhysicsDipoleField (physics)Coherent controlQuantum mechanicsAtomQuasinormal modePhysics::OpticsPhysics::Atomic PhysicsStimulated emissionAtomic physicsQuantumPhotonic crystal
researchProduct

Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality

2021

Black hole spectroscopy is a powerful tool to probe the Kerr nature of astrophysical compact objects and their environment. The observation of multiple ringdown modes in gravitational waveforms could soon lead to high-precision gravitational spectroscopy, so it is critical to understand if the quasinormal mode spectrum is stable against perturbations. It was recently shown that the pseudospectrum can shed light on the spectral stability of black hole quasinormal modes. We study the pseudospectrum of Reissner-Nordstr\"om spacetimes and we find a spectral instability of scalar and gravitoelectric quasinormal modes in subextremal and extremal black holes, extending similar findings for the Sch…

star: compactspace-time: Schwarzschildblack hole: Reissner-NordstroemScalar (mathematics)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesQuasinormal mode010306 general physicsperturbation: gravitationMathematical PhysicsMathematical physicsPseudospectrumPhysicsSpacetime010308 nuclear & particles physicsHorizonquasinormal modegravitational radiationblack hole: stabilityMathematics::Spectral Theorystabilityblack hole: quasinormal modequasinormal mode: spectrumBlack holeperturbation: scalarwave: model[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Schwarzschild radius
researchProduct

Pseudospectrum and Black Hole Quasinormal Mode Instability

2020

We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospec…

High Energy Physics - TheoryperturbationcompactificationQC1-999[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesInstabilityStability (probability)General Relativity and Quantum Cosmologyoperator: spectrumGeneral Relativity and Quantum CosmologyTheoretical physics0103 physical sciencesQuasinormal modestructurenumerical calculations010306 general physicsMathematical PhysicsPseudospectrumPhysicsCompactification (physics)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsPhysicsOperator (physics)black hole: stabilityMathematical Physics (math-ph)Schwarzschildquasinormal mode: spectrumBlack holeHigh Energy Physics - Theory (hep-th)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]spectralSchwarzschild radiusPhysical Review X
researchProduct

Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems

2022

The general context of this thesis is an effort to establish a bridge between gravitational andoptical physics, specifically in the context of scattering problems using as a guideline concepts andtools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes(QNMs), namely the natural resonant modes of open leaky structures under linear perturbationssubject to outgoing boundary conditions. They also are referred to as scattering resonances.In the conservative self-adjoint case the spectral theorem guarantees the completeness andspectral stability of the associated normal modes. In this sense, a natural question in the non-self-adjoint setting refers to the char…

QNM completenessPseudospectrumBlack holesNanoparticulesMethodes spectralesSpectrum stabilityOperateurs non-selfadjointsSpectral methodsQuasinormal modesPseudospectreNon-Selfadjoint operatorNanoparticlesModes quasi-NormauxComplétude de modes quasi-NormauxTrous noirStabilité spectrale[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

Coherent Control of Stimulated Emission inside one dimensional Photonic Crystals:Strong Coupling regime

2006

The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the ca…

Field (physics)Physics::Opticsquasinormal modeslaw.inventionPhotonic crystalslawElectromagnetismNormal modeQuantum mechanicsAtomSpontaneous emissionPhysics::Atomic PhysicsEmission spectrumBoundary value problemStimulated emissionQuantumPhysicsQuantum opticsLocal density of statesCondensed matter physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsClassical mechanicsCoherent controlOptical cavityExcited stateDensity of statesAtomic physics
researchProduct

Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case

2018

We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions, in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordstr\"om. The discussion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyperboloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients in the expansion of the solution in te…

PhysicsSpacetime010308 nuclear & particles physicsGeneral relativitynumbers: 0425dgCauchy distributionalternative theories of gravityConformal map04.30.-w16. Peace & justice01 natural sciencesSlicingGeneral Relativity and Quantum CosmologyTheoretical physicsGeneral Relativity and Quantum Cosmology02.30.MvGeneral relativityRegularization (physics)0103 physical sciencesQuasinormal mode[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010306 general physicsSchwarzschild radiusPhysical Review D
researchProduct

A Weyl's law for black holes

2023

We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could …

High Energy Physics - Theory[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]black hole: binary: coalescencephotonFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)space-time: dimensionblack hole: quasinormal modeGeneral Relativity and Quantum CosmologydecayWeylHigh Energy Physics - Theory (hep-th)trapped surface[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]black hole: Schwarzschildstructureasymptotic behaviorany-dimensionaloperator: Laplaceblack hole: geometry
researchProduct

Quasi-Normal Frequencies in Open Cavities: An Application to Photonic Crystals

2005

The electromagnetic field in an optical open cavity is analyzed in the framework of the Quasi-Normal Modes theory. The role of the complex quasi-normal frequencies in the transmission coefficient and their link with the density of quasi-modes function is clarified. An application to a quarter-wave symmetric one-dimensional photonic crystals is discussed to illustrate the usefulness and the meaning of our results.

Electromagnetic fieldPhysicsOpen cavitybusiness.industryQuantum opticHadronPhysics::OpticsLink (geometry)Function (mathematics)Condensed Matter Physicsquasinormal modesOpticsPhotonic crystalTransmission coefficientbusinessPhotonic crystalActa Physica Hungarica B) Quantum Electronics
researchProduct